|
办公室:上海大学宝山校区东区19号楼108室 电 话: 021-66138351 E-mail: wmwin@shu.edu.cn 学术主页:https://www.researchgate.net/profile/Wang-Min-3 个人简介: 副教授,硕士生导师。上海市超级博士后、上海市白玉兰人才浦江项目。 2017年6月本科毕业于燕山大学,2022年7月博士毕业于上海大学。2021年至2022年在德国慕尼黑工业大学进行国家公派联合培养博士生留学项目,2022年7月至2024年12月在上海大学从事博士后研究工作。2024年12月任上海大学生命科学学院副教授。王敏在生物医学工程领域有着10余年的学习和研究经历,构建了基于PET脑影像的个体代谢脑网络新方法,在PET/MRI医学图像分析和神经退化性疾病诊疗方面具有扎实的研究基础。主持含自然基金青年项目在内的4项项目,已在EJNMMI、Neuroimage、HBM等领域内国际知名影像学期刊上以第一/共一作者署名发表SCI论文数篇。担任EJNMMI、JNM、ART、ER等多本高水平期刊编委。
研究领域: 生物医学工程-PET/MRI脑影像分析 代谢脑影像相关的方法论及其临床应用 阿尔兹海默症及帕金森病等相关神经退化性疾病的分子影像智能分析 在研承担项目: [1] 国家自然科学基金青年项目,基于动态PET/MRI 影像的合作协同进化多层脑网络算法及ICVD 应用研究,2024年-2026年,主持 [2] 中国博士后科学基金面上项目,基于DTI 结构约束的个体代谢连接组学方法及其在AD 早期诊断中的应用,2022年-2024年,主持 [3]国家自然科学基金面上项目,基于脑灰-白质图卷积模型的SCD影像标记物提取及临床应用研究,参与,2024年-2027年 [4] 上海市白玉兰人才项目浦江项目,2024年-2026年,主持 [5] 上海市“超级博士后”激励资助计划,2022年-2024年,主持 主要学术论文: [1] Cui, L., Zhang, Z., Tu, Y. Y., Wang, M., Guan, Y. H., Li, Y. H., Xie, F., & Guo, Q. H. (2024). Association of precuneus Aβ burden with default mode network function. Alzheimer's & dementia: the journal of the Alzheimer's Association.https://doi.org/10.1002/alz.14380 [2] Wang, M., Wei, M., Wang, L., Song, J., Rominger, A., Shi, K., Jiang, J., & Alzheimer’s Disease Neuroimaging Initiative (2024). Tau Protein Accumulation Trajectory-Based Brain Age Prediction in the Alzheimer's Disease Continuum. Brain sciences, 14(6), 575. https://doi.org/10.3390/brainsci14060575 [3] Wang, M., Lu, J., Zhang, Y., Zhang, Q., Wang, L., Wu, P., Brendel, M., Rominger, A., Shi, K., Zhao, Q., Jiang, J., & Zuo, C. (2024). Characterization of tau propagation pattern and cascading hypometabolism from functional connectivity in Alzheimer's disease. Human brain mapping, 45(7), e26689. https://doi.org/10.1002/hbm.26689 [4] Liu, Y., Wang, M., Yu, X., Han, Y., Jiang, J., & Yan, Z. (2024). An effective and robust lattice Boltzmann model guided by atlas for hippocampal subregions segmentation. Medical physics, 51(6), 4105–4120. https://doi.org/10.1002/mp.16984 [5] Lu, J., Ju, Z., Wang, M., Sun, X., Jia, C., Li, L., Bao, W., Zhang, H., Jiao, F., Lin, H., Yen, T. C., Cui, R., Lan, X., Zhao, Q., Guan, Y., Zuo, C., & Shanghai Memory Study (SMS) (2023). Feasibility of 18F-florzolotau quantification in patients with Alzheimer's disease based on an MRI-free tau PET template. European radiology, 33(7), 4567–4579. https://doi.org/10.1007/s00330-023-09571-7 [6] Wang, M., Schutte, M., Grimmer, T., Lizarraga, A., Schultz, T., Hedderich, D. M., Diehl-Schmid, J., Rominger, A., Ziegler, S., Navab, N., Yan, Z., Jiang, J., Yakushev, I., & Shi, K. (2022). Reducing instability of inter-subject covariance of FDG uptake networks using structure-weighted sparse estimation approach. European journal of nuclear medicine and molecular imaging, 50(1), 80–89. https://doi.org/10.1007/s00259-022-05949-9 [7] Wang, M., Cui, B., Shan, Y., Yang, H., Yan, Z., Sundar, L. K. S., Alberts, I., Rominger, A., Wendler, T., Shi, K., Ma, Y., Jiang, J., & Lu, J. (2022). Non-Invasive Glucose Metabolism Quantification Method Based on Unilateral ICA Image Derived Input Function by Hybrid PET/MR in Ischemic Cerebrovascular Disease. IEEE journal of biomedical and health informatics, 26(10), 5122–5129. https://doi.org/10.1109/JBHI.2022.3193190 [8] Jiang, J., Wang, M., Alberts, I., Sun, X., Li, T., Rominger, A., Zuo, C., Han, Y., Shi, K., & Initiative, F. T. A. D. N. (2022). Using radiomics-based modelling to predict individual progression from mild cognitive impairment to Alzheimer's disease. European journal of nuclear medicine and molecular imaging, 49(7), 2163–2173. https://doi.org/10.1007/s00259-022-05687-y [9] Wang, M., Yan, Z., Zhang, H., Lu, J., Li, L., Yu, J., Wang, J., Matsuda, H., Zuo, C., Jiang, J., & Alzheimer’s Disease Neuroimaging Initiative (2021). Parametric estimation of reference signal intensity in the quantification of amyloid-beta deposition: an 18F-AV-45 study. Quantitative imaging in medicine and surgery, 11(1), 249–263. https://doi.org/10.21037/qims-20-110 [10] Wang, M., Jiang, J., Yan, Z., Alberts, I., Ge, J., Zhang, H., Zuo, C., Yu, J., Rominger, A., Shi, K., & Alzheimer’s Disease Neuroimaging Initiative (2020). Individual brain metabolic connectome indicator based on Kullback-Leibler Divergence Similarity Estimation predicts progression from mild cognitive impairment to Alzheimer's dementia. European journal of nuclear medicine and molecular imaging, 47(12), 2753–2764. https://doi.org/10.1007/s00259-020-04814-x [11] Wang, M., Yan, Z., Xiao, S. Y., Zuo, C., & Jiang, J. (2020). A Novel Metabolic Connectome Method to Predict Progression to Mild Cognitive Impairment. Behavioural neurology, 2020, 2825037. https://doi.org/10.1155/2020/2825037 |